

Perundurai R.S. PH: 9486379461, 8344933377 Register Number

XII - MARCH 2024

PART - III வேதியியல்/CHEMISTRY

(தமிழ் மற்றும் ஆங்கில வழி / Tamil & English Version)

கால அளவு : 3.00 மணி நேரம்]

[மொத்த மதிப்பெண்கள் : 70

Time Allowed: 3.00 Hours]

[Maximum Marks: 70

அறிவுரைகள் : (1) அனைத்து வினாக்களும் சரியாகப் பதிவாகி உள்ளதா என்பதனை சரிபார்த்துக் கொள்ளவும். அச்சுப்பதிவில் குறையிருப்பின், அறைக் கண்காணிப்பாளரிடம் உடனடியாகத் தெரிவிக்கவும்.

- (2) **நீலம்** அல்லது **கருப்பு** மையினை மட்டுமே எழுதுவதற்கும் அடிக்கோடிடுவதற்கும் பயன்படுத்த வேண்டும். படங்கள் வரைவதற்கு பென்சில் பயன்படுத்தவும்.
- **Instructions**: (1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
 - (2) Use Blue or Black ink to write and underline and pencil to draw diagrams.

குறிப்பு : தேவையான இடத்தில் படம் வரைந்து, சமன்பாடுகளை எழுதவும்.

Note: Draw diagrams and write equations wherever necessary.

பகுதி - I / PART - I

குறிப்பு: (i) அனைத்து வினாக்களுக்கும் விடையளிக்கவும்.

15x1=15

(ii) கொடுக்கப்பட்டுள்ள **நான்கு** மாற்று விடைகளில் மிகவும் ஏற்புடைய விடையைத் தேர்ந்தெடுத்து குறியீட்டுடன் விடையினையும் சேர்த்து எழுதவும்.

Note: (i) Answer all the questions.

(ii) Choose the most appropriate answer from the given **four** alternatives and write the option code and corresponding answer.

1. **கூற்று :** மோனோ கிளினிக் கந்தகம் என்பது மோனோகிளினிக் படிக வகைக்கு

ஒரு உதாரணம்.

காரணம் : மோனோகிளினிக் படிக அமைப்பிற்கு $a \neq b \neq c$ மேலும் $\alpha = \gamma = 90^\circ$,

2

 $\beta \neq 90^{\circ}$.

(அ) **கூற்று** சரி ஆனால் **காரணம்** தவறு.

- (ஆ) **கூற்று** மற்றும் **காரணம்** இரண்டும் சரி, மேலும் **காரணமானது கூற்றிற்கான** சரியான விளக்கமாகும்.
- (இ) **கூற்று** மற்றும் **காரணம்** இரண்டும் தவறு.
- (ஈ) **கூற்று** மற்றும் **காரணம்** இரண்டும் சரி ஆனால் **காரணமானது கூற்றிற்கான** சரியான விளக்கமல்ல.

Assertion: Monoclinic sulphur is an example of monoclinic crystal system.

Reason : For a monoclinic system, $a \ne b \ne c$ and $\alpha = \gamma = 90^{\circ}$, $\beta \ne 90^{\circ}$.

- (a) Assertion is true but Reason is false.
- (b) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (c) Both Assertion and Reason are false.
- (d) Both Assertion and Reason are true, but Reason is not the correct explanation of Assertion.
- 2. $K_3[AI(C_2O_4)_3]$ என்ற அணைவுச் சேர்மத்தின் IUPAC பெயர் :
 - (அ) பொட்டாசியம் ட்ரிஸ் ஆக்சலேட்டோ அலுமினேட் (III)
 - (ஆ) பொட்டாசியம் ட்ரை ஆக்சலேட்டோ அலுமினியம் (III)
 - (இ) பொட்டாசியம் ட்ரை ஆக்சலேட்டோ அலுமினேட் (III)
 - (ஈ) பொட்டாசியம் ட்ரை ஆக்சலேட்டோ அலுமினேட் (II)

IUPAC name of the complex $K_3[Al(C_2O_4)_3]$ is :

- (a) Potassium trisoxalato aluminate (III)
- (b) Potassium trioxalato aluminium (III)
- (c) Potassium trioxalato aluminate (III)
- (d) Potassium trioxalato aluminate (II)

3.	ഥിത്	வருவனவற்றுள்	ഖരിഥെധ്നത് ഷ	அமில	ம் எத	<u>?</u> ر			
	(ౢౢౢ	HBr	(굋) HI		(இ)	HCI	(FF)	HF	
	Whic	h of the followin	g is the strongest	acid a	among	g all ?			
	(a)	HBr	(b) HI		(c)	HCl	(d)	HF	
	.0		2 🗇 🛨	O ÷ .		2			
4.	ഥിങ്ങ	வருவனவறறுள	sp ² இனக்கலப்பு	യ്ക്കുഖ	லாதது	எது :			
	(এ)	புல்லாீன்		(ஆ)) கிரா	ஃபைட்			
	(இ)	உலர் பனிக்கட்	q	(FF)	கிரா	ஃபீன்			
	Whic	Which of the following is not sp ² hybrid							
	(a)	Fullerene		(b)	Grap	hite	-		
	(c)	Dry ice		(d)	Grap	hene			•
5.	RNA	வில் காணப்ப	டும் பிரிமிடின் க	ாரங்ச	ன்:				
	(அ)	சைட்டோசின் ப	மற்றும் தையமின்	រា					
	(ஆ) சைட்டோசின் மற்றும் அடினைன்								
	(இ)	சைட்டோசின் ப	மற்றும் யுராசில்						
	(ஈ) சைட்டோசின் மற்றும் குவானைன்								
	The pyrimidine bases present in RNA are :								
	(a)	Cytosine and Th	niamine						
	(b)	Cytosine and A	denine						
	(c)	Cytosine and U	racil						
	(d)	Cytosine and G	uanine						
A								[திருப்புக /	Turn over

6.	ஆஸ்பிரின் என்பது :							
	(அ) குளோரோ பென்சாயிக் அமிலம்							
	(ஆ) அசிட்டைல் சாலிசிலிக் அமி	லம்						
	(இ) ஆந்த்ரனிலிக் அமிலம்							
	(ஈ) பென்சாயில் சாலிசிலிக் அமி	ນເດັ						
	Aspirin is:	,						
	(a) chlorobenzoic acid							
	(b) acetyl salicylic acid							
	(c) anthranilic acid							
	(d) benzoyl salicylic acid							
7.	ஆக ஆக்சிஜனேற்றம் (அ) அசிட்டேட்	(ஆ) ஆக்சலேட்						
	(இ) அசிட்டிக் அமிலம்	(ஈ) கார்பன் டை ஆக்ஸைடு						
	In acid medium, potassium permang							
	(a) acetate (c) acetic acid	(b) oxalate						
	(c) acetic acid	(d) carbon dioxide						
8.	அனிலீனானது அசிட்டிக் அமில நீரி	லியுடன் வினைப்பட்டு கொடுக்கும் விளைபொருள் :						
	(அ) p-அமினோ அசிட்டோபீனோ	ठंग						
	(ஆ) ௦-அமினோ அசிட்டோபீனோ	ं						
	(இ) அசிட்டனிலைடு							
	(ஈ) m-அமினோ அசிட்டோபீனோ	்ன்						

When aniline reacts with acetic anhydride, the product formed is : (a) p-aminoacetophenone

(b) o-aminoacetophenone

(c) acetanilide

(d) m-aminoacetophenone

9.	கீழ்க்	கண்டவற்றுள் எது நீராற் பகுப்ப	டைய	ரது ?
	(의)	சோடியம் குளோரைடு	(ஆ)	சோடியம் பார்மேட்
	(@)	அம்மோனியம் பார்மேட்	(FF)	அம்மோனியம் நைட்ரேட்
	Amo	ng the following which will not be	hydr	olysed ?
	(a)	Sodium Chloride	(b)	Sodium Formate
	(c)	Ammonium Formate	(d)	Ammonium Nitrate
10.	பின்	வரும் மின்கலங்களில் எவை மு	தன்னை	ம மின்கலங்களாகும் ?

- (i) லெக்லாஞ்சே மின்கலம் (ii) நிக்கல்-காட்மியம் மின்கலம்
- (iii) லெட் சேமிப்புக் கலம் (iv) மெர்குரி மின்கலம்
- (அ) (iii) மற்றும் (iv) (ஆ) (i) மற்றும் (iv)
- (இ) (ii) மற்றும் (iii) (ஈ) (i) மற்றும் (iii)

Among the following cells primary cells are:

- (i) Leclanche cell (ii) Nickel-Cadmium cell
- (iii) Lead Storage Battery (iv) Mercury cell
- (a) (iii) and (iv) (b) (i) and (iv) (c) (ii) and (iii) (d) (i) and (iii)
- 11. அசிட்டோனிலிருந்து சயனோஹைட்ரின் உருவாகும் வினை பின்வருவனவற்றுள்
 - (அ) எலக்ட்ரான் கவர் சேர்ப்பு வினை
 - (ஆ) கருகவர் பதிலீட்டு வினை
 - (இ) கருகவர் சேர்ப்பு வினை

எதற்கு சான்றாக உள்ளது ?

(ஈ) எலக்ட்ரான் கவர் பதிலீட்டு வினை

The formation of cyanohydrin from acetone is an example of :

- (a) electrophilic addition
- (b) nucleophilic substitution
- (c) nucleophilic addition
- (d) electrophilic substitution

Δ

12.	ஒரு வினையின் வினைவேக மாறிலியின் மதிப்பு $5.8 imes 10^{-2}~{ m s}^{-1}$ எனில் அவ்வினையின் வினைவகை :							
	(곽)	இரண்டாம் வ	ரை	(ஆ)) முத	ல் வகை		
	(@)	மூன்றாம் வகை	5	(rr)	Пä	ഇിധ ഖകെ		
	The r	ate constant of a	reaction is 5.8×1	10^{-2} s	s^{-1} .	The order of the	reaction	on is :
	(a)	Second order		(b)	First	t order		
	(c)	Third order		(d)	Zero	order		
13.	_	னாற்பகுத்தல் மு மின்வாயாக செ		்ரத் து	ரய் ை	மயாக்குவதில் ப	பின்வ(நவனவற்றுள் எது
	(அ) கார்பன் தண்டு			(ஆ) தூய காப்பர்				
	(Q)	பிளாட்டினம் மி	ின்வாய்	(FF)	தூய்	மையற்ற காப்ப	ηţ	
	In the electrolytic refining of copper, which one of the following is used as anode?					as anode ?		
	(a)	Carbon rod		(b)	Pure	copper		
	(c) Platinum electrode			(d) Impure copper				
14.	இருப்	ാபு வினைவேக	மாற்றியின் செய	ல்திற	னை	அதிகரிக்கும் கே	சர்மம்	:
	(의)	CH ₃ COOH	(ஆ) H ₂ S		(風)	Al_2O_3	(ஈ)	As_2O_3
	Activ	ity of iron cataly	st is increased by	the _		compound		
	(a)	CH₃COOH	(b) H ₂ S		(c)	Al_2O_3	(d)	As_2O_3
15.	நிலை (அ)	oயிலேயே [*] நிறை Na ₂ Cr ₂ O ₇)வு செய்யப் பட (ஆ) KMnO ₄	(ன்படு)ம் ஆ (இ)	_ஆ க்சிஜனேற்றிய K ₂ Cr ₂ O ₇	ானது (ஈ)	PCC
			4	idatio:				ıldehyde stage is :
	(a)	Na ₂ Cr ₂ O ₇	(b) KMnO ₄		(c)	K ₂ Cr ₂ O ₇	(d)	PCC

XII - MARCH 2024

பகுதி - II / PART - II

குறிப்பு : ஏதேனும் ஆறு வினாக்களுக்கு விடையளிக்கவும். வினா எண் 24 -க்கு கட்டாயமாக விடையளிக்கவும். 6x2=12

Note: Answer any six questions. Question No. 24 is compulsory.

- 16. காற்றில்லாச் சூழலில் வறுத்தல் என்றால் என்ன ? What is Calcination ?
- 17. போரிக் அமிலத்தை எவ்வாறு போரான் நைட்ரைடு ஆக மாற்றுவாய் ? How will you convert boric acid to boron nitride ?
- 18. கந்தக அமிலம் ஒரு நீர்நீக்கும் காரணி. ஒரு எடுத்துக்காட்டுடன் நிறுவுக. Sulphuric acid is a dehydrating agent. Justify with an example.
- 19. பொது அயனி விளைவை ஒரு எடுத்துக்காட்டுடன் விளக்குக. Explain common ion effect with an example.
- **20.** Fe^{3 +} அயனிகள் திட்ட நிலைமைகளில் புரோமைடை புரோமினாக ஆக்சிஜனேற்றம் அடையச் செய்யுமா ?

கொடுக்கப்பட்டது : $E_{\mathrm{Fe}^{3+}|\mathrm{Fe}^{2+}}^{\circ}=0.771~\mathrm{V}$

$$E_{Br_2|Br^-}^{\circ} = 1.09 \text{ V}$$

Can Fe³⁺ oxidise bromide to bromine under Standard Conditions?

Given: $E_{Fe^{3+}|Fe^{2+}}^{\circ} = 0.771 \text{ V}$

$$E_{Br_2|Br^-}^{\circ} = 1.09 \text{ V}$$

21. கோல்ஃப் வினையை எழுதுக.

Write Kolbe's reaction.

A

- 22. கீழ்க்கண்டவற்றின் அமைப்பை எழுதுக.
 - $\alpha-D$ -குளுக்கோபைரனோஸ் மற்றும்
 - β D-குளுக்கோபைர**னோஸ்**

Write the structure of the following:

- α D-glucopyranose and
- β D-glucopyranose
- 23. எதிர் உயிரிகள் என்றால் என்ன?

What are antibiotics?

24. ഖിതെബേതെക என்றால் என்ன?

What is an order of a reaction?

பகுதி - III / PART - III

குறிப்பு : ஏதேனும் ஆறு வினாக்களுக்கு விடையளிக்கவும். வினா எண் 33 -க்கு கட்டாயமாக 6x3=18

Note: Answer any six questions. Question No. 33 is compulsory.

ஹீலியத்தின் பயன்களைத் தருக.

Give the uses of helium.

- 26. Fe^{3+} அல்லது Fe^{2+} எது அதிக நிலைப்புத் தன்மை உடையது ? ஏன் ? Which is more stable Fe^{3+} or Fe^{2+} ? Why ?
- 27. அலுமினியமானது கனசதுர நெருங்கிப் பொதிந்த அமைப்பில் படிகமாகிறது. அதன் உலோக ஆரம் 125 pm. அலகுக் கூட்டின் விளிம்பு நீளத்தைக் கணக்கிடுக.

Aluminium crystallizes in a cubic close packed structure. Its metallic radius is 125 pm. Calculate the edge length of unit cell.

28. அர்ஹீனியஸ் சமன்பாட்டினை எழுதி அதில் இடம்பெற்றுள்ளவற்றை விளக்குக.

Write Arrhenius equation and explain the terms involved.

29. இயற்புறப்பரப்பு கவர்தல் மற்றும் வேதிப்புறப்பரப்பு கவர்தல் ஆகியவற்றின் மீது வெப்பநிலை மற்றும் அழுத்தத்தின் விளைவினை விளக்குக.

Explain the effect of temperature and pressure on physisorption and chemisorption.

30. நோவெநகல் வினையை விளக்குக.

Explain Knoevenagal reaction.

31. ஓரிணைய அமீன், கார்பன் டை சல்பைடுடன் புரியும் வினையை எழுதுக.

Write the reaction of primary amine with Carbon disulphide (CS₂).

32. பெப்டைடு பிணைப்பு பற்றி சிறுகுறிப்பு வரைக.

Write a short note on peptide bond.

- 33. [Co(CN), Cl₂]Cl என்ற அணைவில் பின்வருவனவற்றைக் கண்டறிக.
 - (i) IUPAC பெயர்
 - (ii) மைய உலோக அயனி
 - (iii) அതതാവെ எண்

In the complex, [Co(CN)₂ Cl₂]Cl, identify the following.

- (i) IUPAC name
- (ii) Central metal ion
- (iii) Co-ordination number

A

XII - MARCH 2024

பகுதி - IV / PART - IV

குறிப்பு: அனைத்து வினாக்களுக்கும் விடையளிக்கவும்.

5x5 = 25

Note: Answer all the questions.

- 34. (அ) (i) கனிமம், தாது ஆகியவற்றிற்கிடையேயான வேறுபாடுகள் யாவை ?
 - (ii) காப்பர் பிரித்தெடுத்தல் செயல்முறையில் சிலிக்காவின் பங்கு என்ன?

அல்லது

- (ஆ) (i) போரிக் அமிலத்தின் பயன்களை எழுதுக.
 - (ii) சிலிக்கேட்டுகள் என்றால் என்ன?
- (a) (i) What are the differences between minerals and ores?
 - (ii) What is the role of silica in the extraction of copper?

OR

- (b) (i) Give the uses of Boric acid.
 - (ii) What are silicates?
- 35. (அ) லாந்தனாய்டு குறுக்கம் என்றால் என்ன? அதன் விளைவுகள் யாவை?

அல்லது

- (ஆ) (i) இரட்டை உப்புகள் மற்றும் அணைவுச் சேர்மங்கள் பற்றி சிறுகுறிப்பு எழுதுக.
 - (ii) மருத்துவத் துறையில் பயன்படும் ஓர் அணைவுச் சேர்மம் மற்றும் உயிரியல் முக்கியத்துவம் வாய்ந்த அணைவுச் சேர்மம் ஆகியவற்றுக்கு உதாரணம் தருக.
- (a) What is Lanthanoid Contraction and what are the consequences of Lanthanoid Contraction?

OR

- (b) (i) Write a short notes on double salts and co-ordination compounds.
 - (ii) Give an example of Coordination Compound used in medicine and a biologically important Coordination Compound.

36. (அ) எளிய கனச்சதுர படிக அமைப்பின் பொதிவுத் திறனை கணக்கிடுக.

அல்லது

- (ஆ) (i) A → விளைபொருள் என்ற பூஜ்ய வகை வினைக்கான தொகைப்படுத்தப்-பட்ட வேக விதியினை வருவிக்கவும்.
 - (ii) தாங்கல் திறன் வரையறுக்கவும்.
- (a) Calculate the percentage efficiency of packing in case of simple cubic crystal.

OR

- (b) (i) Derive the integrated rate law for a Zero order reaction, $A \rightarrow product$.
 - (ii) Define buffer Index.
- 37. (அ) (i) கால்வானிக் மின்கல குறியீடு முறையைப் பற்றி விளக்குக.
 - (ii) கோல்டு எண் வரைய<u>ற</u>ுக்கவும்.

அல்லது

- (ஆ) லூகாஸ் சோதனை பற்றி குறிப்பெழுதுக.
- (a) (i) Explain about Galvanic cell notation.
 - (ii) Define gold number.

OR

- (b) Write notes on Lucas Test.
- 38. (அ) (i) கிரிக்னார்டு வினைக்காரணியிலிருந்து அசிட்டிக் அமிலம் எவ்வாறு தயாரிக்கப்படுகிறது ?
 - (ii) மக்கும் பலபடிகள் என்றால் என்ன? எடுத்துக்காட்டு தருக.

அல்லது

- (ஆ) C_2H_4O என்ற வாய்பாடு கொண்ட கரிமச் சேர்மம் (A) ஆனது Zn-Hg/அடர் HCl உடன் வினைபுரிந்து சேர்மம் (B) -யைத் தருகிறது. சேர்மம் (B) ஆனது HNO_3 உடன் வினைபுரிந்து சேர்மம் (C) (முதன்மை விளைபொருள்) மற்றும் சேர்மம் (D) -யைத் தருகிறது. மேலும் சேர்மம் (C) ஆனது அடர் HCl உடன் வினைபுரிந்து சேர்மம் (E) (சமையல் வினிகர்) மற்றும் ஹைட்ராக்சிலமினைத் தருகிறது. A, B, C, D மற்றும் E ஆகியவற்றைக் கண்டறிந்து தகுந்த வினைகளைத் தருக.
- (a) (i) How acetic acid is prepared from Grignard reagent?
 - (ii) What are bio-degradable polymers? Give an example.

OR

(b) An organic Compound (A) of molecular formula C₂H₄O reacts with Zn-Hg/Conc. HCl to give Compound (B) which reacts with HNO₃ forming Compound (C) (as major product) and Compound (D). Compound (C) reacts with conc. HCl to give Compound (E) (Table vinegar) and hydroxylamine. Identify A, B, C, D and E with suitable reactions.

- 0 O o -

Α

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S.

PH: 9486379461, 8344933377

DEPARTMENT OF GOVERNMENT EXAMINATIONS – CHENNAI-6 HSC SECOND YEAR EXAMINATION MARCH - 2024 CHEMISTRY ANSWER KEY

Note: 1. Answer written with Blue or Black ink only to be evaluated

2. Choose the most suitable answer in **PART** – I from the given alternatives and write the option code and the corresponding answer.

XII - MARCH 2024

Maximum Marks: 70

PART-I

Answer all the questions

15×1=15

AI	iswer a	II the questions		15×1-15		
Q.No	Option Code	'A' Type	Q. No	Option Code	'B' Type	
1	b)	Both Assertion and Reason are true and Reason is the correct explanation of Assertion	1	b)	First order	
2	c)	Potassium trioxalato aluminate (III)	2	b)	Acetyl salicylic acid	
3	b)	HI	3	d)	carbon dioxide	
4	c)	Dry ice	4	c)	Potassium trioxalato aluminate (III)	
5	c)	Cytosine and Uracil	5	a)	Sodium chloride	
6	b)	Acetyl salicylic acid	6	b)	(i) and (iv)	
7	d)	carbon dioxide	7	d)	Impure copper	
8	c)	acetanilide	8	b)	Both Assertion and Reason are true and Reason is the correct explanation of Assertion	
9	a)	Sodium chloride	9	c)	Nucleophilic addition	
10	b)	(i) and (iv)	10	c)	Dry ice	
11	c)	Nucleophilic addition	11	d)	PCC	
12	b)	First order	12	b)	Н	
13	d)	Impure copper	13	c)	acetanilide	
14	c)	Al_2O_3	14	c)	Cytosine and Uracil	
15	d)	PCC	15	c)	Al_2O_3	

Part -II

XII - MARCH 2024

XII -	MARCH 2024 No.24 is Compulsory.	6×2=1	2
Answe	r any SIX Questions and Question No.24 is Compulsory. Answer	Ma	rks
Q.No	(ar) Correct Equation	2	2
16	Correct Explanation (6r) Correct	2	
17	Correct equation (or) equation without condition	11/2	2
	(or) unbalanced equation (or) equation	1	
	(or) mere explanation alone	2	
18	Any one correct equation (or)	_	2
	Explanation (Any one)	1	
19	Correct explanation	1	
	Example	1	2
20	$E_{cell}^{\circ} = (E_{oxi}^{\circ}) + (E_{red}^{\circ})$ (or) = -1.09+0.771	1/2	
20	$E_{cell}^{\circ} = -0.319 \text{ V (or)} E_{cell}^{\circ} \text{ is -ve}$	1/2	2
	Fe ³⁺ cannot oxidises Br ⁻ to Br ₂	1	
21	OH ONa OH COONA COOH Phenol sodium phenoxide sodium salicylate Salicyclic acid	2	2
	(or) equation without condition (or) explanation only	1	
22	α -D- glucopyranose	1+1	2
23	Correct explanation	2	
24	(or) one example correct definition	1	2
		2	2

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S.

PH: 9486379461, 8344933377

Answer any SIX Questions and Question No.33 is Compulsory. 6×3=18

	The successions and Que	Stion Mo.33 is Compaisory.	•	
Q.No	Ans	wer	Mark	(S
25	Any three uses		3	3
26	Fe ³⁺ = [Ar] 3d ⁵		1	
	Fe ³⁺ - half-filled d orbital		1	3
	Fe ³⁺ is stable		1	
27	$r = \frac{a\sqrt{2}}{4}$ (or) $a = \frac{4r}{\sqrt{2}}$ (or) $a = 2$	$2\sqrt{2} r$ (or) a=2x1.414 r	1	
		$2\sqrt{2}\ 125$ (or) a=2x1.414 x125	1	3
	a = 353.5 pm	1/2+1/2	3	
28	$K = A\epsilon$	e-Ea/RT	1	
	 K = Rate constant A = Frequency factor R = Gas constant E_a = Energy of activation T =Temperature 		4x½	3
29	Physisorption	chemisorption		
	Physisorption decreases with increase in temperature.	When temperature is raised chemisorption first increases and then decreases.	11/2	
	In Physisorption, when pressure increases the extent	Chemical adsorption is fast with increase Pressure, it cannot alter the amount.	11/2	3
30	C_6H_5 -CH = $O + H_2$ C COOH Pyridine C ₆ H ₅ CH	$H = C \xrightarrow{COOH} \frac{\Delta}{COOH} \rightarrow C_6H_5 CH = CH - COOH$	3	
	Benzaldehyde Malonic acid	Cinnamic acid		3
	(or) equation without condition	ı	21/2	
	(or) explanation only		1	

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

XII - MA	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	3
	(or) equation without condition (or) explanation only	2½ 1	
32	Correct explanation (or) correct example	3	3
	(or) -CO-NH- bond only	1	3
33	Mere Attempt	3	3

Part- IV

Answe	r all the Questions	5x5=25				
Q.No	Q.No Answer					
34 (a)	i) Any 3 differences	3	_			
	ii) Silica acts as a flux (or) Correct Equation only	2	5			
	(OR)					
(p)	i) Any 3 uses	3				
	ii) Correct definition	2	5			
	(or) Correct Structure only	1				
35 (a)	Lanthanoid contraction – Explanation	2				
	Lanthanoid contraction consequences (Any Three)	3	5			
	(OR)					
(b)	i) Double salt – Explanation (or)	11/2				
	Double salt – Example	1				
	Co-ordination Compound – Explanation (or)	11/2				
	Co-ordination Compound – Example	1	5			
	ii) One example for medicinal importance	1	-			
	One example for biological importance	1				

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S.

PH: 9486379461, 8344933377

VII	I N/		CL	2024
ЛΙ	- IV	IAK	$oldsymbol{\cup}$	2024

XII - IV	IARCH 2024		
36 (a)	Packing efficiency = $\frac{\text{total volume occupied by spheres in a unit cell}}{\text{volume of the unit cell}} \times 100$	1	
	Volume of cube = $a \times a \times a = a^3$		
	(or)	1	
		•	
	Radius of the sphere from figure, $a = 2r(or)r = \frac{a}{2}$		
	Volume of the sphere with radius = $\frac{4}{3}\pi \left(\frac{a}{2}\right)^3$	1	5
	$(or) = \frac{\pi a^3}{6}$		
•	0		
	Packing efficiency = $\frac{1 \times \frac{\pi a^3}{6}}{a^3} \times 100$	1	
	-		
	= 52.38%	1	
	(OR)		
(b)	i) Rate = $k[A]^0$ (or) $\frac{-d[A]}{dt} = k$ (or) - $d[A] = kdt$		
	dt k (et) apg kat	1	
	[A]		
	$-\int_{[A_0]}^{[A]} d[A] = K \int_0^t dt \qquad (or) \qquad -([A])_{[A_0]}^{[A]} = k (t)_0^t$	1	
	[4.]-[4]		5
	$[A_0] - [A] = kt$ (or) $k = \frac{[A_0] - [A]}{t}$	1	
	ii) Correct definition (or)	2	
	Formula		
37 (a)	i)	1	
07 (4)	Phase boundary Phase boundary		
	†		
	$Zn(s) Zn^{2+}(aq) Cu^{2+}(aq) Cu(s) E^{\circ} = 1.1V$		
	Anode Cathode Standard cmf of the cell (extreme Left) (extreme right)	3	
	*		
	Anode half Cathode Cat		5
	(or)		
	Correct Explanation	3	
	(or)		
	$ \mathbf{Zn} \mathbf{Zn^{2+}} \mathbf{Cu^{2+}} \mathbf{Cu} \mathbf{E}^0 = 1.1 \mathbf{V}$		
		1	-
	ii) Correct definition GREEN GARDEN MATRIC. HR. SEC	. scHo	φL

Perundurai R.S. PH: 9486379461, 8344933377 5 | Page

- MAF	RCH 2024		(OR)			
(b)	CH ₃ I CH ₃ - C - OH CH ₃ 2-methylpropan-	2 al	CH ₃ 2 -chloro-2-me		2	
	OH CH ₃ - CH - CH ₃ propan-2-ol	anhydrous + HCl ZnCl ₂	CH ₃ — CH — CH ₃		2	5
	CH ₃ - CH ₂ - OH ethanol		No reaction	n at room temperature bears only on heating)	1	
	(or) Correct eq			turbidity Lucas reagent	3	
38 (a)						
	Correct Explanation					5
	ii)Correct defin				2	
	, ,		(OR)			
(b)	CH ₃ -C- H	2				
	Acetaldehyde (A) Ethane (B)					
	0	F		Nome		5
	Compound	Formula	-	Name		
	В	CH ₃ CHO	(or)	Acetaldehyde Ethane	3×1	
	E	CH₃COOH	-	Acetic acid		

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S.

PH: 9486379461, 8344933377

6 | Page